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ABSTRACT

The intriguing in-context learning (ICL) abilities of deep Transformer models
have lately garnered significant attention. By studying in-context linear regression
on unimodal Gaussian data, recent empirical and theoretical works have argued
that ICL emerges from Transformers’ abilities to simulate learning algorithms like
gradient descent. However, these works fail to capture the remarkable ability of
Transformers to learn multiple tasks in context. To this end, we study in-context
learning for linear regression with diverse tasks, characterized by data covariance
matrices with condition numbers ranging from [1, κ], and highlight the importance
of depth in this setting. More specifically, (a) we show theoretical lower bounds of
log(κ) (or

√
κ) linear attention layers in the unrestricted (or restricted) attention

setting and, (b) we show that multilayer Transformers can indeed solve such tasks
with a number of layers that matches the lower bounds. However, we show that
this expressivity of multilayer Transformer comes at the price of robustness. In
particular, multilayer Transformers are not robust to even distributional shifts as
small as O(e−L) in Wasserstein distance, where L is the depth of the network. We
then demonstrate that Looped Transformers —a special class of multilayer Trans-
formers with weight-sharing— not only exhibit similar expressive power but are
also provably robust under mild assumptions. Besides out-of-distribution general-
ization, we also show that Looped Transformers are the only models that exhibit
a monotonic behavior of loss with respect to depth.

1 INTRODUCTION

Transformer-based language models (Vaswani, 2017) have demonstrated remarkable in-context
learning abilities (Brown et al., 2020), thereby bypassing the need to fine-tune them for specific
tasks. This is a desirable feature for large models because fine-tuning them is often expensive. In
particular, given just a few samples of a new learning task presented in the context, the model is able
to meta-learn the task and generate accurate predictions without having to update its parameters.
In an attempt to study this phenomenon, recent work has shown that Transformers can demonstrate
such in-context learning abilities on a variety of learning tasks such as linear or logistic regression,
decision trees (von Oswald et al.; Garg et al., 2022; Xie et al., 2021) and, perhaps surprisingly, even
training Transformers themselves (Panigrahi et al., 2023). This has sparked significant interest to
theoretically understand the in-context learning phenomenon. From a more theoretical perspective,
there are two crucial aspects to this in-context learning ability: (1) the Transformer architecture is
powerful enough to implement iterative algorithms, including first order optimization methods such
as gradient or preconditioned gradient descent (Li et al., 2024; Von Oswald et al., 2023; Akyürek
et al., 2022), and (2) Transformers with appropriate optimization algorithm can indeed learn to
simulate such algorithms (Ahn et al., 2024a; Gatmiry et al., 2024). These results provide further
insights into how in-context learning could arise within Transformer models. Recent papers (e.g
(Ahn et al., 2024a; Gatmiry et al., 2024)) have studied both these aspects for Transformers on a
single task — linear regression setting where the data is sampled i.i.d Gaussian.

One of the mysterious features of recent foundation models, which separates them from traditional
learning systems, is their ability to handle a spectrum of tasks, from question answering within a
broad range of topics, to reasoning or in-context learning for various learning setups. The emer-
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gence of this ability to handle task diversity naturally necessitates the training data to incorporate a
diverse datasets, which inherently makes the training distribution highly multimodal. Consequently,
foundation models need more capacity to be able to solve such diverse tasks. However, recent work
on in-context learning theory focus on unimodal Gaussian data distribution. In such settings, even
constant number of layers suffice to achieve any arbitrarily small error. Thus, while interesting,
these works fail to capture the remarkable ability of Transformers to learn multiple tasks in context
and explicate the role of depth in these settings.

To this end, in this paper we introduce a new in-context learning setting, task-diverse linear re-
gression, which specifically examines how well Transformers can in-context learn linear regression
problems arising from fairly diverse data. More specifically, in task-diverse linear regression, the
data can be sampled from multiple Gaussians where the eigenvalues of its covariance matrix can
range from [1, κ]. For this setting, we ask the following important question:

For multilayer Transformer, what is the role of depth in task-diverse linear regression? Is it possible
to establish upper and lower bounds that depend on task diversity?

In this paper, we resolve this problem by showing lower bound of log κ and matching upper bounds
— indicating a fundamental limit on the depth required to solve the task-diverse linear regression
setting. Furthermore, in the special case of attention layers considered in (Von Oswald et al., 2023),
we obtain a lower bound of Ω(

√
κ) instead. Correspondingly, we also show a matching upper bound

in this special setting, thereby; providing a comprehensive picture of the representation power of
multilayer Transformers in various important settings with task diversity.

While the above results paint a powerful picture of multilayer Transformers, it remains unclear
if this comes at any cost. In this paper, we show that this is indeed the case and the price we
pay is robustness. First, diverging significantly from prior works, we study the problem of out-of-
distribution generalization on a very general class of distributions (see 2). Under this general class of
distributions, we show that the out-of-distribution generalization of multilayer Transformer can get
exponentially worse with depth. Thus, the strong representation power of multilayer Transformers
indeed comes at the price of robustness. This begs an important question: is it possible to achieve
both robustness and expressivity at the same time?

Recently, there has been interest in the special class of Transformers, called Looped Transformers,
which have empirically shown to have much more robust out-of-distribution generalization (Yang
et al., 2023). Looped Transformers are essentially multilayer Transformers that share weights across
layers. It is natural to ask if Looped Transformers exhibit similar representation-robustness tradeoff
as multilayer Transformers. Perhaps surprisingly, we provide a negative answer to this question.
In particular, we show that Looped Transformers can match the lower bound of log(κ) on the rep-
resentative power, similar to multilayer Transformers. However, this does not come at the cost of
robustness. In fact, Looped Transformers can achieve very good out-of-distribution generalization.
In light of this discussion, we state the following main contributions of our paper.

• We consider the task-diverse in-context linear regression where the eigenvalues of the input co-
variance matrix has eigenvalues in the range [1, κ]; to handle this class of instances, we show
a Ω (

√
κ) lower bound on the number of required attention heads in the restricted attention

case (Section 2.3), and a Ω (log(κ)) lower bound for the unconstrained case (Theorem 1). The
Ω (log(κ)) lower bound matches the upper bound presented in Fu et al. (2023). In particular, our
lower bounds hold for linear attention as well as for ReLU non-linearity.

• We show a matching upper bound on the constrained case in equation 5 by proving that the
Transformer can implement multiple steps of the Chebyshev iteration algorithm (Theorem 2).

• We design an adaptive termination condition for multilayer Transformers based on the norm
of the residuals; thereby, providing an flexible and efficient mechanism for early stopping with
fewer layers (Theorem 3).

• We show that for certain training distributions on the covariance matrix, multilayer Transformers
can overfit, in which case even if we are at a global minimizer with zero population loss and the
test distribution has exponentially small deviation of O(Ld−19−L) in Wasserstein distance from
the training distribution, the test loss can be up to a constant error (Theorem 6).
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• In contrast to the multilayer case, we show that under a mild condition that the training dis-
tribution puts some non-trivial mass on covariance matrices with large eigenvalues, the global
minimizer of the training loss for loop Transformers extrapolate to most other distributions that
have the same support (Theorem 7).

• Our theoretical insights regarding how depth make Transformers more task-diverse, and
the robust out-of-distribution generalization of Looped Transformers compared to standard
multilayer Transformers are validated through experiments in simple linear regression setting.

1.1 RELATED WORK

Transformers in Task Diversity. Raventós et al. (2024) observe a connection when the level of task
diversity in the pretraining distribution is above a threshold, and the emergence of strong in-context
learning abilities for linear regression, by switching from a Bayesian estimator to ridge regression.
Garg et al. (2022); Akyürek et al. (2022); Von Oswald et al. (2023) observe that Transformers can
extrapolate to new test distributions for in-context learning. Min et al. (2022) discover surprising
latent task inference capabilities in language models, even when using random labels for in-context
demonstrations. Kirsch et al. (2022) empirically show the benefits of task diversity for in-context
learning in classification tasks. Chan et al. (2022) investigate which aspects of the pretraining dis-
tribution enhance in-context learning and find that a more bursty distributions proves to be more
effective than distributions that are closer to uniform. The impact of task diversity has also been
studied in the context of meta learning (Yin et al., 2019; Kumar et al., 2023; Tripuraneni et al.,
2021) or transfer learning and fine-tuning (Raffel et al., 2020; Gao et al., 2020). In the current work,
we use task diversity to study the expressivity of Transformers and the role of depth.

Transformers and Looping as Computational Models. Transformers are known to be effec-
tive computational models and Turing-complete (Pérez et al., 2019; 2021; Giannou et al., 2023).
Garg et al. (2022); Akyürek et al. (2022); Von Oswald et al. (2023); Dai et al. (2022) argue that
Transformers can implement optimization algorithms like gradient descent by internally forming
an appropriate loss function. Allen-Zhu and Li (2023) observe that Transformers can generate sen-
tences in Context-free Grammers (CFGs) by utilizing dynamic programming. Other work focuses on
how training algorithms for Transformers can recover weights that implement iterative algorithms,
such as gradient descent, for in-context learning, assuming simplified distributions for in-context
instances Ahn et al. (2024b); Zhang et al. (2024); Mahankali et al. (2023). Notably, while most
of these studies focus on the single-layer case, recent work by the authors in Gatmiry et al. (2024)
provides a global convergence result for training deep Looped Transformers.

2 PRELIMINARIES

2.1 IN-CONTEXT LINEAR REGRESSION

In this works, we study the impact of depth, looping, and diversity on in-context learning for the
supervised learning task of linear regression. The setting of linear regression for in-context learning
has also been studied by Gatmiry et al. (2024); Ahn et al. (2024a); Von Oswald et al. (2023);
Akyürek et al. (2022). We briefly describe the setup here.

Linear regression. Each supervised learning task in our setting is given by a linear regression
instance (X,w∗, y, xq) with data matrix X ∈ Rd×n, labels y, regressor w∗, and query vector xq . In
particular, X consists of the observed data inputs {xi}ni=1 as its columns: X = [x1, . . . , xn]. In this
work, we assume that the instances are realizable i.e., X⊤w∗ = y. Thus, w∗ can be obtained by the
following pseudo-inverse relation:

w∗ = (XX⊤)−1Xy.

We define Σ = XX⊤ to be the input covariance since this will play an important role going forward.
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2.2 TASK DIVERSITY & ROBUSTNESS

To handle task diversity, we need a model that not only makes accurate predictions for a fixed
distribution, but is also robust to a class of distributions. Here, we focus on the notion of robustness
with respect to various distributions on the covariance matrix Σ of the linear regression instance. It is
unreasonable to expect the model to behave well for all possible distributions, so we focus on the set
of instances where the eigenvalues of the covariance matrix are in the range (α, β) for 0 < α < β.
Definition 1. We define the set Sα,β of (α, β) “normal” linear regression instances as the set in-
stances with a well-conditioned covariance matrix X⊤X:

Sα,β =
{
(X,w∗, y, xq) : αI ≼ XX⊤ ≼ βI

}
.

In order for the model to handle task diversity on the set of instances in Sα,β , the loss needs to be
small for any distribution Pα,β that is supported on covariances αI ≼ Σ ≼ βI , which means the
model has to be accurate for all the instances in Sα,β . In this work, we are interested in understand-
ing the ability of Transformers to handle task diversity from two angles: (1) expressiveness of the
Transformer architecture is in representing task-diverse models (Section 3) and (2) robustness of
these models in terms of out-of-distribution generalization. We first formally define the models used
in this paper before exploring these questions.

2.3 TRANSFORMER MODEL

Self-Attention layer. Central to our paper is the single attention layer, which we define below. First
we define the matrix Z(0) as a (d+1)× (n+1) matrix by combining the data matrix X , their labels

y, and the query vector xq as follows: Z(0) =

[
X xq

y⊤ 0

]
.

Given the key, query, and value matrices Wk,Wq,Wv , we follow (Ahn et al., 2024a; Von Oswald
et al., 2023) and define the self-attention model Attnlin (Z;Wk,q,v) with activation function σ as:

Attnlin (Z;Wk,q,v) ≜ WvZMσ(Z⊤Wk
⊤WqZ),

M ≜

[
In×n 0
0 0

]
∈ R(n+1)×(n+1),

where the index k×r below a matrix determines its dimensions, and by σ(M) for matrix M we mean
entry-wise application of σ on M. To simplify the notation for analysis, we combine the key and
query matrices into Q, as Q = W⊤

k Wq . Hence, we have the following alternative parameterization:

Attnlin (Z;Q,P ) ≜ PZMσ(Z⊤QZ),

where now the learnable parameters are the matrices P,Q. We consider the cases where σ(x) =
Relu(x) or σ(x) = x is linear. If σ is linear, then the model becomes linear self-attention, which
was first considered by Ahn et al. (2024a); Von Oswald et al. (2023); Schlag et al. (2021) to under-
stand the behavior of in-context learning for linear regression. Note that even with linear attention,
the output of the attention layer Attnlin (Z;Q,P ) is a nonlinear map in (P,Q) or Z, and hence
challenging to analyze. Since we consider multilayer models, it turns into a low-degree polynomial
in either Z or in the set of weights {P (t), Q(t)}L−1

t=0 ; the limits of its expressivity is investigated in
this work. Furthermore Ahn et al. (2024b) showed that studying linear attention can already provide
signal about non-linear attention. Here, we study the questions of expressivity and robustness.

Transformers. Using L attention heads, we define a Transformer block TF(Z(0), {P (t), Q(t)}L−1
t=0 ).

In particular, following the notation in (Ahn et al., 2024a), we define

Z(t+1) ≜ Z(t) − 1
nAttnlin

(
Z(t);Q(t), P (t)

)
. (1)

which results in the recursive relation

Z(t+1) = Z(t) − 1
nP

(t)Z(t)Mσ(Z(t)⊤Q(t)Z(t)). (2)

4
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Then, the final output of the Transformer is the ((d+ 1), (n+ 1)) entry of Z(t):

TF(Z(0), {P (t), Q(t)}L−1
t=0 ) = −Z(L)

(d+1),(n+1). (3)
Note the minus sign in the final output, which is primarily for the ease of our exposition later on.

Looped Transformer Model. A Looped Transformer model is simply a multilayer Transformer
with weight-sharing i.e., we define it as TF(Z(0), P,Q) = −Z(L)

(d+1),(n+1) where

Z(t+1) = Z(t) − 1
nPZ(t)Mσ(Z(t)⊤QZ(t)). (4)

Restricted Attention. Following Ahn et al. (2024a), in addition to our lower bound in Theorem 1
for the more general case when {P (t), Q(t)}L−1

t=0 can be arbitrary, we also study a relevant special
case when the last row and column of Q(t) are zero and only the last row of P (t) is non-zero i.e.,

Q(t) =

[
A(t) 0
0 0

]
, P (t) =

[
0d×d 0

u(t)⊤ 1

]
. (5)

This special case is important as it can implement preconditioned gradient descent, while it keeps
the feature matrix X the same going from Z(t−1) to Z(t). In this case, the left upper d × n block
of the second term in equation 2 is always zero. This is because we assume the d × d zero block
in P (t). We denote the output of the Transformer in this case by TF(Z(0), {A(t), u(t)}L−1

t=0 ). We
denote the first n entries of the last row of Z(t) by vector y(t)

⊤
, and the last entry by y

(t)
q , i.e.

y
(t)
q = Z(t)

(d+1)×(n+1). Unrolling equation 5, we obtain the following recursions for y(t) and y
(t)
q :

y(t+1)⊤ = y(t)
⊤
− 1

n
(y(t)

⊤
+ u(t)⊤X)σ

(
X⊤A(t)X

)
,

y(t+1)
q = y(t)q − 1

n
(y(t)

⊤
+ u(t)⊤X)σ

(
X⊤A(t)xq

)
.

Note that the final output of the Transformer, TF(Z(0), {A(t), u(t)}L−1
t=0 ), is equal to y

(L)
q .

3 ON THE ROLE OF DEPTH IN MULTILAYER TRANSFORMERS FOR TASK
DIVERSITY

In this section, we examine the power and limits of multilayer Transformers. We first present lower
bounds for multilayer Transformers in both the general case and the restricted attention case (Sec-
tion 2) and, then provide matching upper bounds. While this makes a compelling case for the ex-
pressivity power of multilayer Transformers, in Section 4.2.1, we show that multilayer Transformers
can suffer from overfitting and perform very poorly under distribution shifts.

3.1 LOWER BOUND ON THE POWER OF MULTILAYER TRANSFORMERS

In this section, we provide lower bound for multilayer Transformers in solving in-context learning.
Lemma 1 (Effect of scaling on accuracy - restricted attention). For an L-layer Transformer with
architecture defined in equation 2 and 5, with arbitrary weights and positive homogeneous ReLU ac-
tivation σ or simply using linear attention (σ(x) = x), consider an arbitrary instance of a realizable
linear regression (X,w∗, y, xq);

1. There exists a scaling 1 ≤ γ ≤ 36L2 such that the Transformer’s response for the scaled instance
(γX,w∗, γy, xq) will be inaccurate by constant:

|TF(Z(0), {A(t), u(t)}L−1
t=0 )− w∗⊤xq|

|w∗⊤xq|
≥ 1

4
, (6)

where Z(0) =

[
γX xq

γy⊤ 0

]
is the Transformer input corresponding to the instance

(γX,w, γy, xq). Even more, there exists an interval [a, b] inside [1, 36L2] with length at least
constant (independent of L) such that for all γ ∈ (a, b) we have equation 6.

5
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2. Furthermore, if we do not restrict the weight matrices {P (t), Q(t)}L−1
t=0 to have the form in equa-

tion 5, then there is a scaling 1 ≤ γ ≤ 2L such that

|TF(γZ(0), {P (t), Q(t)}L−1
t=0 )− w∗⊤xq|

|w∗⊤xq|
≥ 1

4
.

Theorem 1 (Lower bound on the representation power of Transformers). For the Transformer archi-
tecture with ReLU or linear activation defined in equation 3, under the weight restriction equation 5,
consider the set Sα,β of (α, β)-normal realizable instances of linear regression (X,w, y, xq) where
αI ≼ X⊤X ≼ βI . Then, given L ≤

√
β/α and for any choice of {A(t), u(t)}Lt=1 and query vector

xq , there exists a normal instance (X,w∗, y, xq) ∈ Sα,β with that query vector, such that

|TF(Z(0), {A(t), u(t)}L−1
t=0 )− w∗⊤xq|

|w∗⊤xq|
≥ 1

2
. (7)

Furthermore, beyond the restricted attention ( equation 5), given L = O (log (β/α)) for small
enough constant, we incur at least constant error for some instance (X,w∗, y, xq) ∈ Sα,β .

Theorem 1 asserts that a minimum depth is required for multilayer Transformer to be able to solve all
instances of linear regression whose covariance matrix is in the range [α, β]. In particular, this lower
bound depends on β

α , which increases with the diversity of the instances. For the restricted attention
case, the lower bound is Ω(

√
β/α) whereas for the general case the lower bound is Ω(log(β/α)).

Remark 3.1. (Fu et al., 2023) show that, given full freedom in the weights of Transformers, one
can implement one step of the iterative Newton method with an attention head. Hence, multilayer
Transformers with depth at least Ω(ln (β/α)) are able to accurately solve all instances in Sα,β . Our
result essentially shows a matching lower bound for this case in Theorem 1, for achieving any con-
stant error bound that can be arbitrarily small. Interestingly, their construction uses the same set of
weights for all of the attention layers, therefore, their network is indeed a looped Transformer. This
shows that looped models can also match the lower bound in terms of numbers of layers required.
We will revisit this in Section 4.1.

3.2 MATCHING UPPER BOUND FOR MULTILAYER TRANSFORMER

We show the existence of weights for a linear Transformer that can solve a linear regression instance
with bounded condition number using restricted attention defined in equation 5.
Theorem 2. For σ(x) = x, there exists a set of weights {A(t), u(t)}L−1

t=0 for linear Transformer in
the restricted case defined in equation 5 with depth at most L = O(ln(1/ϵ)

√
β/α) such that for

every linear regression instance (X,w∗, y, xq) ∈ Sα,β we have

|TF(Z(0), {A(t), u(t)}L−1
t=0 )− w∗⊤xq| ≤ ϵ∥w∗∥∥xq∥.

Notably, the dependency
√
β/α in Theorem 2 matches the lower bound that we show for the same

restricted Transformer model in Theorem 1. The square root dependency comes from the fact that
one can implement an iterative algorithm for solving a linear regression instance using the properties
of Chebyshev polynomials. The proof of Theorem 2 can be found in Section C.3. The

√
β/α

dependence is indeed reminisent of the accelerated rate dependency on the condition number in
smooth ans strongly convex optimization.

3.3 ADAPTIVE DEPTH

In this section, we investigate adaptive strategies that can be used for terminating a multilayer Trans-
former earlier, before passing the input through all the L layers. Surprisingly, our result below, shows
convergence of the output of the Transformer if we adaptively terminate based on ∥y(ℓ)∥.
Theorem 3 (Termination guarantee). For a linear Transformer architecture as defined in equation 2
with σ(x) = x, given u(i) = 0, suppose we wait until ∥y(ℓ)∥ ≤ ϵ

∥xq∥XX⊤
. Then, the output of the

Transformer at layer ℓ is close to the true label:

|yq − TF(Z(0), {A(t), u(t)}ℓ−1
t=0)| ≤ ϵ∥xq∥XX⊤ .

6
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This result further highlights the computational benefits by terminating in an adaptive manner.

4 ON THE POWER & ROBUSTNESS OF LOOPED TRANSFORMERS VERSUS
MULTI-LAYER TRANSFORMERS

In the previous section, we studied expressivity of multilayer Transformers for task-diverse linear
regression. In Section 4.1, we discuss how even though Looped Transformers are more restricted
compared to multilayer Transformers, their expressive power is just as good for in-context linear
regression. While expressivity is important for task-diversity of our model, we also want the model
to be robust to distribution shifts from the training distribution. In Section 4.2, we show that mul-
tilayer Transformers are not very robust to even very tiny perturbations to the training distribution.
In contrast, Looped Transformers are provably more robust. Finally, motivated by the fact that early
stopping is a desirable property for neural nets, in Section 4.3 we study the monotonicity behavior
of multilayer Transformers with respect to depth and interestingly find that they cannot behave
monotonic with respect to all covariance matrices unless the weights of different layers are equal.

4.1 EXPRESSIVITY OF LOOPED TRANSFORMERS

Looped Transformers are a subclass of multilayer Transformers that uses weight-sharing, and thus,
cannot exceed multilayer Transformers in representation power. Despite this restriction, we observe
that their ability in handling task-diversity almost remains unchanged. In particular, according to the
construction in (Fu et al., 2023), there exists a Looped transformer in addition to constant number
of attention layers, that can achieve small error for all instances in Sα,β after ln(β/α) number of
loops, matching the lower bound in Theorem 1.
Theorem 4 (Restatement of Theorem 5.1 in Fu et al. (2023)). There exists a Looped Trans-
former with additional eight attention layers that implements the Newton algorithm i.e., for instance
(X,w∗, y, xq), looping L times results in output x̂⊤

q w
(Newton)
L where w

(Newton)
L ≜ MLXy where Mj

is updated as Mj = 2Mj−1ΣMj−1, j ∈ [1, L],M0 = αΣ, where Σ = XX⊤.

Furthermore, in the restricted attention case as defined in equation 5, with the implementation of
gradient descent by Von Oswald et al. (2023) which also uses weight sharing, it is easy to check that
Looped Transformers can still achieve small error on all instances in Sα,β with depth O(β/α) (see
Section B); in this case, we see a gap with the Ω(

√
β/α) lower bound in Theorem 1.

Theorem 5 (Follows from Proposition 1 in Von Oswald et al. (2023)). There exists a Looped Trans-
former architecture in the restricted attention case which for a linear regression instance S =
(X,w∗, y, xq) ∈ Sα,β can achieve accuracy |TF(Z(0), {A, 0}L−1

t=0 ) − y| ≤ ϵ after O(ln(1/ϵ)β/α)
number of loops.

4.2 OUT-OF-DISTRIBUTION GENERALIZATION

So far we examined the crucial role of depth for task-diversity settings. However, it is unclear if the
weights that minimize the population loss are robust to distributions shifts. To this end, we study the
task diversity of transformers through the lens of out-of-distribution generalization. We first study
the limitations of multi-layer Transformers with respect to out-of-distribution generalization. Recall
that each instance of the in-context learning problem is a linear regression supervised-learning
task, denoted by (X, y,w∗, xq), so a population distribution over such instances corresponds to a
distribution over X,w∗, xq . To enable this study, we consider the population loss with respect to
various distributions on the covariance matrix in the restricted attention case defined in Section 2.3.
In particular, we focus on distribution shifts on the covariance matrix of the linear regression
instances, so we set u(t) = 0 and define the loss function with respect to a distribution P on the
covariance matrix Σ = XX⊤. For simplicity, we further assume that the population distribution
over xq and w∗ are according to N(0,Σ) and N(0,Σ−1), respectively. This choice of distribution
follows (Gatmiry et al., 2024). Note that while this breaks the independence assumption between
xi’s and xq , when the number of samples n grows large, given that the sample covariance matrix
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converges to the population covariance Σ∗, then this assumption reduces to the i.i.d case where
xi, xq ∼ N(0,Σ). Therefore, we define the population loss as

LP ({A(t)}L−1
t=0 ) ≜ EΣ∼P,w∗∼N(0,Σ−1),xq∼N(0,Σ)

(
TF(Z(0), {A(t), 0}L−1

t=0 )− y
)2

. (8)

In particular, for the special case of the looped model (where A(t) = A for t ∈ [L− 1]), the loss is:

LP (A) ≜ EΣ∼P,w∗∼N(0,Σ−1),xq∼N(0,Σ)

(
TF(Z(0), {A, 0}L−1

t=0 )− y
)2

.

When the distribution P is a point mass on covariance Σ, we denote the loss by LΣ({A(t)}L−1
t=0 )

and LΣ(A). We denote a distribution on the covariance matrices that is only supported on {αI ≼
Σ ≼ βI} by Pα,β , with sub-indices α, β showing the interval of the eigenvalues for the support of
the covariances. The key message that we deliver in this section is that loop Transformers are more
robust for out-of-distribution generalization compared to multilayer Transformers. To elucidate the
advantage of looped over multilayer Transformers, we need the following definition (Section 4.2.2).
Definition 2. We say the distribution Pα,β supported on the covariance matrices of linear regression
instances in Sα,β (or we abbreviate by saying supported on Sα,β) is (ϵ, δ) right-spread-out if for
every fixed unit vector v, Pα,β(∥X⊤v∥2 ≥ (1− δ)β) ≥ ϵ.

The right-spread-out property restricts the distribution on the data covariance XX⊤ so that for
every direction v ∈ Rd, it puts a minimum amount of mass on matrices whose eigenvectors with
large eigenvalues, that are close to the right end point of the interval (α, β), are close to v.

4.2.1 WEAKNESS OF MULTILAYER TRANSFORMERS FOR OUT-OF-DISTRIBUTION
GENERALIZATION

From Section 3.2, recall that there exists a multilayer Transformer of depth O(ln(1/ϵ)
√
β/α) that

can solve any linear regression with covariance Σ such that αI ≼ Σ ≼ βI . However, it is unclear if
minimizing the training loss recovers such a network. Here, we show that this is not the case.

Theorem 6 (Multilayer Transformers blow up out of distribution). Given β
α ≥ 10 and for any ϵ > 0,

there exists a ( 1
L , 0) right-spread-out distribution Pα,β such that there exists a global minimizer

{A(t)∗}L−1
t=0 of the loss LPα,β ({A(t)}L−1

t=0 , 0) for linear Transformer defined in equation 2, so that
for any other distribution P̃α,β on Σ which has at least ϵ mass supported on 8αI ≼ Σ ≼ (1−δ′)βI ,
the out of distribution loss L(P̃α,β) exponentially blows up at {A(t)∗}L−1

t=0 with the depth:

L(P̃α,β)({A(t)∗}L−1
t=0 , 0) ≥ ϵδ′d9L−1.

We further suspect that there is only one global minimizer of the loss in Theorem 6. In particular,
Theorem 6 shows that multilayer Transformers are essentially prone to overfiting, so that with a
slight deviation of the test distribution from the train distribution (even O( L

d9L−1 )) in Wasserstein
distance, the test loss will incur constant error for the global minimizer of the train loss.

4.2.2 OUT-OF-DISTRIBUTION GENERALIZATION OF LOOPED TRANSFORMERS

Our result in Theorem 6 states that multi-layer Transformers can behave poorly for out-of-
distribution generalization. Here, we show that Looped Transformers can indeed circumvent this
issue by restricting the model with weight sharing when the training distribution is right-spread-out.
Theorem 7 (Looped Transformer is robust out-of-distribution). Given an (ϵ, δ) right-spread-out
distribution Pα,β on Sα,β , let A∗ be the global minimizer of L(Pα,β)(A, 0) for the linear Looped
Transformer defined in equation 4 with σ(x) = x in the region αI ≼ A−1 ≼ βI . Then, given any
ϵ′ ≤ ϵ and any other distribution P̃α,(1−δ′)β that is supported on (α, (1− δ′)β), for

δ′ = δ + ln(d/ϵ′)
L such that δ′ ≤ 1− α

β , we have L(P̃α,(1−δ′)β)(A∗, 0) ≤ ϵ′ ∧
(
1− α

β

)2L
.
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Figure 1: We evaluate the test loss of looped models and multilayer model as the function of loops
and depth respectively. In (a), we plot the test loss as a function of number of layers for three
different covariance ranges. As predicted by theory, the larger the range (κ), the more layers are
needed to get a small loss. In (b) we observe that the number of loops required to solve the problem
is very close to the number of layers required for multilayer model.

Theorem 7 demonstrates that if the training distribution is sufficiently spread out, the global
minimizer in a looped model remains robust to a wide range of distributional shifts in the test loss.
Specifically, the test distribution can be any arbitrary distribution on the covariance matrix, as long
as its eigenvalues lie within the slightly narrowed interval of (α, (1− δ′)β), where δ′ = δ + γ ln(d)
approaches δ, the spread-out parameter of the training distribution, as the number of loops increases.
This contrasts with the behavior of multilayer Transformers, which, as shown in Theorem 6, can
overfit when trained on right-spread-out distributions.

4.3 NON-MONOTONICITY OF THE LOSS IN MULTILAYER TRANSFORMER

In Section 3.3, we discussed how one can adaptively pick a depth based on problem difficulty. A
related idea is that of early-exiting (Teerapittayanon et al., 2016), where the goal is to exit the model
at an earlier layer for easier example. This naturally provides inference efficiency. An important
consideration in the early exit literature is monotonicity with respect to layers, i.e., the model’s
error decreases as the layer index increases. This has been studied in detail (Baldock et al., 2021;
Laitenberger et al.) and there is also work on enforcing such monotonicity (Schuster et al., 2022;
Jazbec et al., 2024). In the linear regression incontext learning setting considered in this paper,
we make an intriguing observation: if a multilayer model has monotonically decreasing error with
depth for a diverse set of distributions, then it must be a looped model. This suggests that looped
models are naturally suited for early-exiting strategies. We believe this phenomenon deserves further
exploration in future work. The following theorem formalizes this idea.

Theorem 8 (Monotonic behavior w.r.t depth → equal weights). For multi-layer Transformer
TF({A(t), 0}L−1

t=0 , {A(t), u(t)}L−1
t=0 ) if the average value of the loss is monotonic for 0 ≤ t ≤ L − 1

for every covariance matrix Σ, then we have A(1) = · · · = A(L). Moreover, for the loop model
and for every covariance Σ, there exists an L0 which depends on Σ, such that for all L ≥ L0, the
behavior of the loss becomes monotonic with respect to L.

Proof of Theorem 8 can be found in Section F. At a high level, Theorem 8 states that in order to have
a multilayer Transformer in the restricted attention case (Section 2) for which the population loss
behaves monotonically for an arbitrary choice of distribution on the covariance matrix, then the only
possibility is for the Transformer to be looped. Furthermore, Theorem 8 states that this monotonicity
property indeed holds for the looped model for large enough depth. The proof of Theorem 8 uses
the fact that for any covariance distribution, the loss function can be related to the spectrum of the
weight matrices A(i)’s, and that having unequal A(i)’s, one can construct an adversarial distribution
on the covariance for which the loss does not behave monotonically with respect to the depth.
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Figure 2: We evaluate the robustness of looped models and multilayer model as the level of
deviation of the test distribution from the train distribution increases. The three plots differ in the
number of distinct covariances used in the train distribution. The test distribution is supported on
a window of size w around the train covariances, and w is varied on the x-axis. We see that in all
settings the looped model is more robust than the multilayer model, especially on the left plot where
there is least diversity in the training distribution, as predicted by the theory.

5 EXPERIMENTS

In this section, we run experiments on the in-context learning linear regression problem to validate
the theoretical results. In particular, we would like to demonstrate: (1) role of depth (in both
multilayer and Looped Transformers) with increasing task diversity and (2) robustness of looped
Transformer for out-of-domain generalization. We use the codebase and experimental setup from
(Ahn et al., 2024a) for all our linear regression experiments. In particular, we work with d = 10
dimensional inputs and each input instance consists of n = 20 pairs of (x, y) in the context. We
train with L attention layer models for multilayer training and 1 layer attention model looped L
times, as described in Section 2.3. For simplicity we use the restricted linear attention setting. In all
experiments, we follow the same data distribution as described in Section 4.2. For all experiments,
the covariances are sampled from training and test distributions as follows: train distribution is
Σ = sId, s ∼ Dtrain and test distribution: Σ = sId, s ∼ Dtest. In each experimental setting we will
specify Dtrain and Dtest.

Role of Depth. We demonstrate the importance of depth in presence of task diversity. Consider the
following train and test distributions Dtrain = Dtest = Unif([1, κ]). Task diversity is controlled by
varying κ ∈ [2, 4, 8], with higher value corresponding to more diverse tasks. In Figure 1, we see that
that more diverse tasks (larger κ) require more layers (or loops) in order to achieve low loss. This
aligns with the theoretical results from Section 3.1. Furthermore, we find that looped model with L
loops can be very competitive to multilayer model with L layers even in the most diverse setting.

Out-of-distribution generalization. For this set of experiments, we train models using a distribu-
tion comprising of k covariances. The precise form the train and test distributions are:

• Train distribution: Dtrain = Unif({s1, . . . , sk}) where Sk = {s1, . . . , sk} is selected to be k
values uniformly spread out in the range [1, 8].

• Test distribution: Dtrain = Unif(∪k
i=1[si − w, si + w]) for some deviation w ∈ R.

Note that the train distribution is a mixture of k tasks, whereas the test distribution has a slight de-
viation using a window size of w around the training covariances. For evaluations, w is varied from
0, corresponding to in-distribution evaluation, to a max value of 0.5. In Figure 2, we plot the robust-
ness of multilayer and looped model for different training distributions corresponding to k = 2, 5
and 9. Consistent with our theory in Section 4.2, we observe that looped Transformers have much
better out-of-distribution generalization compared to multilayer Transformers. This also aligns with
the empirical results from Yang et al. (2023) on various incontext learning problems. Furthermore,
as the number of train covariances increase, the looped model becomes perfectly robust.
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6 CONCLUSION

In this paper, we study a more realistic in-context setting than prior works — task-diverse linear
regression, which we believe is more reflective of the incontext abilities of Transformer based foun-
dation models. For this setting, we provide lower bounds on the depth and show Transformers match
these bounds; thereby, providing a comprehensive picture about number of layers required to solve
the problem. While multilayer Transformers demonstrate this powerful representation power, we
show they have weak out-of-distribution generalization, which gets exponentially worse with re-
spect to depth. Surprisingly, we show the Looped Transformers exhibit similar representative power
with much better robustness. We validate our theoretical findings through experiments on linear
regression setting. Finally, we touch upon aspects like adaptive depth and monotonicity of loss in
layers, and we believe that these are very interesting future directions to pursue to understand the
power of looped models. While the incontext linear regression setting is quite simplified, it already
provides a lot of interesting insights in the role of depth and task diversity. Extending this study to
other settings, like reasoning, is a very interesting future direction.
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Jorge Pérez, Javier Marinković, and Pablo Barceló. On the turing completeness of modern neural
network architectures. arXiv preprint arXiv:1901.03429, 2019.
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A RELATED WORK

Transformers in Task Diversity. Raventós et al. (2024) empirically study the relationship between
task diversity in the pretraining distribution and the emergence of in-context learning abilities for
linear regression. They observe an intriguing phase transition, where as task diversity increases, the
learned model shifts from acting as a Bayesian estimator to implementing ridge regression. Garg
et al. (2022) investigate in-context learning across various tasks, where both the inputs and the link
function for the in-context instances are sampled from an underlying distribution. For in-context
linear regression, Garg et al. (2022); Akyürek et al. (2022); Von Oswald et al. (2023) further observe
that transformers are capable of extrapolating to new test distributions, both in terms of the inputs
and the regressor. Min et al. (2022) discover surprising latent task inference capabilities in language
models; even when using random labels for in-context demonstrations (i.e., in the test distribution),
the model can still produce accurate predictions, provided the input distribution in the test instances
is similar to that of the pretraining data. The impact of task diversity has also been studied in the
context of meta learning Yin et al. (2019); Kumar et al. (2023); Tripuraneni et al. (2021). Kirsch et al.
(2022) empirically demonstrate the benefits of task diversity for in-context learning in classification
tasks. Chan et al. (2022) investigate which aspects of the pretraining distribution enhance in-context
learning and find that a more bursty distribution, with potentially a large number of rare clusters,
proves to be more effective than distributions that are closer to uniform. Raffel et al. (2020); Gao
et al. (2020) explore the role of task diversity in the pretraining distribution for improvements in the
context of transfer learning and fine-tuning on downstream tasks.

Transformers as Computational Models. Pérez et al. (2021) Transformers are known to be pow-
erful computational models, Pérez et al. (2019) demonstrating their Turing-completeness. Giannou
et al. (2023) propose that Looped Transformers can function as programmable computers without
scaling the size of its architecture with the runtime logic such as program loops. Akyürek et al.
(2022); Von Oswald et al. (2023); Dai et al. (2022) argue that transformers are expressive enough
to implement optimization algorithms like gradient descent by internally forming an appropriate
loss function. Garg et al. (2022) empirically show that transformers can perform in-context learn-
ing across various learning tasks, while Allen-Zhu and Li (2023) observe that transformers can learn
and generate sentences in Context-free Grammers (CFGs) by utilizing dynamic programming. Other
work focuses on how training algorithms for Transformers can recover weights that implement iter-
ative algorithms, such as gradient descent, for in-context learning, assuming simplified distributions
for in-context instances Ahn et al. (2024b); Zhang et al. (2024); Mahankali et al. (2023). Notably,
while most of these studies focus on the single-layer case, recent work by the authors in Gatmiry
et al. (2024) provides a global convergence result for training deep Looped Transformers.
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B REMAINING PROOFS

Proof of Theorem 7. First, note that the global minimizer A∗ of L and A = β−1I we should have
L(Pα,β)(A∗, 0) ≤ L(Pα,β)(A, 0) ≤ 1. To see this, note that from the definition of optimality of A∗,
we have L(Pα,β)(A∗, 0) ≤ L(Pα,β)(A, 0), and from the formula in Lemma 4:

L(A, 0) = EΣ∼Pα,β
trace

(
(I − Σ1/2AΣ1/2)2L

)
= EΣ∼Pα,β

trace
(
(I − β−1Σ)2L

)
.

But since Σ ≼ βI , we get I − β−1Σ ≼ I , hence (I − β−1Σ) ≼ I , which implies

L(A∗) ≤ d. (9)

Now we show that if given this upper bound on the optimal loss, we should necessarily have

A∗−1 ≽
(1− δ)β

2
(1− ln(1/ϵ)

L
)I.

Suppose this is not the case; Then, there is unit direction v such that

v⊤A∗−1v <
(1− δ)β

2
(1− ln(1/ϵ)

L
). (10)

Now from the (ϵ, δ)-right-spread-out assumption, with probability at least ϵ we have

v⊤Σv = v⊤XX⊤v ≥ (1− δ)β. (11)

Now we claim that under this event we should necessarily have∥∥∥I − Σ1/2A∗Σ1/2
∥∥∥ > 1 +

ln(d/ϵ)

L
.

Suppose this is not the case. Then

Σ1/2A∗Σ1/2 ≼ (2 +
ln(d/ϵ)

L
)I.

But this implies

(2 +
ln(d/ϵ)

L
)A∗−1 ≽ Σ,

which gives

(2 +
ln(d/ϵ)

L
)v⊤A∗−1v ≽ v⊤Σv.

But this contradicts equation 10 and equation 11 as

(2 +
ln(d/ϵ)

L
)(1− ln(d/ϵ)

L
)(1− δ)β = (1− ln(d/ϵ)

L
−
(
ln(d/ϵ)

L

)2

)(1− δ)β < (1− δ)β.

Hence, we should have ∥∥∥I − Σ1/2A∗Σ1/2
∥∥∥ > 1 +

ln(d/ϵ)

L
.

But this means that under this event, which happens with probability at least ϵ under Pα,β , we should
also have (

I − Σ1/2A∗Σ1/2
)2L

≽

(
1 +

ln(d/ϵ)

L

)L

>
d

ϵ
.

This implies

L(A∗, 0) = EΣ∼Pα,β
trace

(
(I − Σ1/2A∗Σ1/2)2L

)
≥ Pr(v⊤Σv ≥ (1− δ)β)× d

ϵ
> d,
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which contradicts equation 9. Therefore, we should have

A∗−1 ≽
(1− δ)β

2
(1− ln(d/ϵ)

L
)I. (12)

Now note that for every Σ sampled from Pα,(1−δ′)β , according to definition we have

Σ ≼ (1− δ′)βI,

which combined with equation 12 implies

Σ1/2A∗Σ1/2 ≤ (1− δ′)β
(1−δ)β

2 (1− ln(d/ϵ′)
L )

=

≤ 2(1− ln(d/ϵ)

L
).

The last inequality is because

1− δ′ = 1− δ − 2
ln(d/ϵ′)

L
≤ 1− δ − 2(1− δ)

ln(d/ϵ′)

L
+ (1− δ)

(
ln(d/ϵ′)

L

)2

= (1− δ)

(
1− ln(d/ϵ′)

L

)2

.

On the other hand, note that for any Σ in the support of Pα,(1−δ′)β , we have

αI ≼ Σ.

Therefore, (
α

β
− 1

)
I ≼ Σ1/2A∗Σ1/2 − I ≼

(
1− 2 ln(d/ϵ′)

L

)
I,

which implies∥∥∥∥(I − Σ1/2A∗Σ1/2
)2L∥∥∥∥ ≤

(
1−

(
2 ln(d/ϵ′)

L
∧ α

β

))2L

≤ ϵ′

d
∨
(
1− α

β

)L

.

Therefore

L(P̃α,(1−δ′)β)(A∗, 0) = EΣ∼Pα,β
trace

(
(I − Σ1/2A∗Σ1/2)2L

)
≤ ϵ′ ∨ d

(
1− α

β

)L

.

Proof of Theorem 5. As described in Appendix A.1 in Von Oswald et al. (2023), we can construct
one iteration of gradient descent for the linear regression quadratic loss in the restricted attention
case, which takes the following form:

y(t+1)⊤ = y(t)
⊤
− ηy(t)

⊤
X⊤X,

y(t+1)
q = y(t)q − ηy(t)

⊤
X⊤xq.

Then, taking the step size η = 1
2β , for the linear regression error we get

|TF(Z(0), {A, 0}L−1
t=0 )− y| = w∗⊤

(
I − η(XX⊤)

)L
xq ≤ ∥w∗∥∥xq∥(1−

α

2β
)L,

which completes the proof.

C LOWER BOUND

C.1 A FORMULA FOR THE LOSS IN THE MULTILAYER CASE

Lemma 2. [Output with non-linearity] We have the following relations

y(t+1)⊤ = y⊤
t∏

i=0

(
I − 1

n
σ
(
X⊤A(i)X

))
,

y(t+1)
q =

t−1∑
j=1

y⊤
(
I −

j−1∏
i=0

(
I − 1

n
σ
(
X⊤A(i)X

)))
σ
(
X⊤A(j)xq

)
+

t−1∏
i=0

(
I − 1

n
σ
(
X⊤A(i)X

))
σ
(
X⊤A(t)xq

)
.
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Proof. Assuming the formula for y(t) and from the update equation for y(t+1),

y(t+1)⊤ = y(t)
⊤
− 1

n
y(t)

⊤
σ
(
X⊤A(t)X

)
= y(t)⊤

(
I − 1

n
σ
(
X⊤A(t)X

))
= y⊤

t∏
i=0

(
I − 1

n
σ
(
X⊤A(i)X

))
.

Therefore, for y(t)q we have

y(t+1)
q = y(t)q +

1

n
y(t)

⊤
σ
(
X⊤A(t)xq

)
=

t−1∑
j=1

y⊤
(
I −

j−1∏
i=0

(
I − 1

n
σ
(
X⊤A(i)X

)))
σ
(
X⊤A(j)xq

)
+

t−1∏
i=0

(
I − 1

n
σ
(
X⊤A(i)X

))
σ
(
X⊤A(t)xq

)
.

Next, we state a Lemma which is at the core of the proof of Lemmas 1 and Theorem 1.
Lemma 3 (Polynomial blow up). Suppose P (γ) is an arbitrary polynomial of degree k with P (0) =

0. Then, given interval (λmin, λmax) and k ≤
√
λmax

6
√
λmin

, for an arbitrary choice of α ∈ R, there exists
a choice of γ̃ ∈ (λmin, λmax) such that

|P (γ̃)− α|
|α|

≥ 1

4
.

Furthermore, there exists an interval (a, b) of length at least λmax−λmin

64k2 such that for all γ ∈ (a, b):

|P (γ)− α|
|α|

≥ 1

8
.

Proof. Let κ = λmin

λmax
. Consider the following scaling of the kth Chebyshev polynomial Tk(γ):

Qk(γ) = Tk(
2γ − (λmin + λmax)

λmax − λmin
).

Now from the fact that Tk(x) = (x+
√
x2 − 1)k +(x−

√
x2 − 1)k outside the interval [−1, 1], we

get for x = −1− α:

(1 +
√
α)k ≤ |Tk(x)| ≤ 1 + (1 + 3

√
α)k.

Therefore, for κ = λmin/λmax we have

Qk(0) = Tk(1−
2λmin

λmax − λmin
) ≤ 1 + (1 + 3

√
4κ)k,

and using the fact that k ≤ 1/(6
√
κ), we have Qk(0) ≤ 4. On the other hand, from the property of

Chebyshev polynomials, we get that Qk(0) alternates between −1 and 1 k times. This means that
if we define R(γ) = Qk(γ)/Qk(0), we have that R(0) = 1, and that R alternates above and below
the y = 1

4 and y = − 1
4 lines k times. Now suppose the absolute value of P (γ) is always within the

interval (α− α/4, α+ α/4). Then for the polynomial P̃ (γ) = 1− P (γ)/α we have P̃ (0) = 1 and
P̃ (γ) < 1

4 for all points γ in the interval [λmin, λmax]. Therefore, if we consider the polynomial
S(γ) = P̃ (γ)−R(γ), then S has degree at most k, S(0) = 0, and S(γ) alternates t times between
positive and negative numbers in the interval [λmin, λmax]. But this means that S has at least t+ 1
real roots. The contradiction finishes the proof for the first part.
Proof for the second part. To show the second part, note that the kth Chebyshev polynomial Tk(x)
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is Lipschitz around its roots; In particular, consider the trigonomic property Tk(cos(θ)) = cos(kθ),
now defining x(θ) = cos(θ), we see that

d

dx
Tk(x(θ)) =

d

dθ
Tk(x(θ))

dθ

dx

=
d

dθ
cos(kθ)

(dx
dθ

)−1

= k sin(kθ)/ sin(θ).

Namely, the extremal points of TK(cos(θ)) are at θ = iπ
k for i = 0, . . . , k− 1. Now for |∆θ| ≤ π

4k ,

Tk(cos(i
π

k
+∆θ)) = cos(πk + k∆) ≥ cos(

π

4
) =

1√
2
≥ 1

2
.

Therefore, we conclude that the ith root cos(πik ) of Tk, for all x in the interval (cos(πik −
π
4k ), cos(

πi
k + π

4k )) we have

Tk(x) ≥
1

2
.

Moreover, it is easy to see that the length of this interval is maximized for i = 0 with length
2(1− cos(πk )). Therefore, for all 0 ≤ i < k, if we define the intervals

(ai, bi)

= (cos(
πi

k
− π

4k
)(
λmax − λmin

2
) +

λmin + λmax

2
, cos(

πi

k
+

π

4k
)(
λmax − λmin

2
) +

λmin + λmax

2
),

then the scaled Chebyshev polynomials Qk that we defined for the previous part have the property
that for all 0 ≤ i < k and γ ∈ (ai, bi), Qk(γ) ≥ 1

2 , and therefore R(γ) ≥ 1
8 . Now suppose

for every 0 ≤ i < k, there exists γi ∈ (ai, bi) such that P (γi) < 1
8 . Then, for the polynomial

S(γ) = P̃ (γ) − R(γ) we see that again it alternates t times between positive and negative at γi’s,
hence has at least k + 1 roots, which is again a contradiction. Therefore, we conclude that there
exists 0 ≤ i < k such that for all γ ∈ (ai, bi):

|P (γ̃)− α|
|α|

≥ 1

8
.

Finally, note that the length of the intervals (ai, bi) is minimized for i = 0, in which case the length
is

(1− cos(
π

4k
))(λmax − λmin) ≥

∣∣1−√1− π2

16k2
(λmax − λmin)

∣∣ ≥ π2

64k2
(λmax − λmin).

C.2 PROOF OF LEMMA 1 AND THEOREM 1

Proof of Theorem 1 directly follows from Lemma 1.

Proof of Lemma 1. First we consider the case when the weight matrices are restricted to A(t), u(t)

as in equation 5. We substitute X = γU and xq = θx with parameters γ, θ and arbitrary fixed
matrix U and vector x. The key idea is to look at y(t)q as a polynomial of γ and θ, Pt(γ), where the
degree of Pt(γ) is at most 2t and Pt(0) = 0.

We show this by induction. In particular, we strengthen the argument by also proving that each
entry of y(t) is a polynomial of degree at most 2t + 1 of γ. The base of induction is clear since
y
(0)
q = 0, y(0) = y are both degree zero polynomials of γ. For the step of induction, suppose the

argument holds for t and we want to prove it for t+ 1. We write the update rule for y(t)q :

y(t+1)
q = y(t)q − 1

n (y
(t)⊤ + u(t)⊤X)σ

(
X⊤A(t)xq

)
. (13)
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Now from the hypothesis of induction, we know that y(t)q is represented by a polynomial of degrees
at most 2t of γ. On the other hand, note that from the positive scaling property of ReLU

σ
(
X⊤A(t)xq

)
= σ

(
γU⊤A(t)xq

)
= γσ

(
U⊤A(t)xq

)
.

Therefore, the second part of the second term in equation 13, i.e. u(t)⊤Xσ
(
X⊤A(t)xq

)
has de-

gree exactly 2 in γ. On the other hand, from the hypothesis of induction we know that each entry
of y(t) is a polynomial of degree at most 2t + 1. Therefore, the first part of the second term,
1
ny

(t)⊤σ
(
X⊤A(t)xq

)
, has degree at most 2t + 2. Hence, overall y(t+1)

q is a polynomial of degree

at most 2t+ 2 of γ. Next, we show the step of induction for y(t+1). We have the update rule

y(t+1)⊤ = y(t)
⊤
− 1

n (y
(t)⊤ + u(t)⊤X)σ

(
X⊤A(t)X

)
.

Now again from the scale property of the activation

σ
(
X⊤A(t)X

)
= σ

(
(γU)⊤A(t)(γU)

)
= γ2σ

(
U⊤A(t)U

)
.

Hence, from the hypothesis of induction, y(t) is a polynomial of degree at most 2t + 1,
y(t)

⊤
σ
(
X⊤A(t)X

)
is of degree at most 2t + 3, and u(t)⊤Xσ

(
X⊤A(t)X

)
is of degree at most

three. Overall we conclude that y(t+1) is of degree at most 2t+ 3 which finishes the step of induc-
tion. The result then follows from Lemma 3.

Next, we show the second argument without the weight restriction equation 5 with a similar strategy,
namely we substitute X = γU and bound the degree of polynomial that entries of Z(t) are of
variable γ. In particular we claim that each entry of Z(t) is a polynomial of degree at most 3t

of γ. The base of induction is trivial as Z(1) is a polynomial of degree at most 1 of γ. Now for
step of induction, given that Z(t) is a polynomial of degree at most 3t, in light of the recursive
relation equation 2, Z(t) and the one-homogeneity of ReLU, we get that Z(t+1) is of degree at most
3t+1, proving the step of induction. The result follows again from Lemma 3.

C.3 PROOF OF THEOREM 2

Proof of Theorem 2. Using Lemma 4, setting u(i) = 0,∀i ≤ L we have

|TF(Z(0), {A(t), u(t)}L−1
t=0 )− w∗⊤xq|

= |yq − w∗⊤xq|

= |w∗⊤
L−1∏
i=0

(I − ΣA(i))xq|.

Now pick A(i) = θ−1
i I , where θi =

(
β−α
2 λi +

β+α
2

)−1

is the ith root of the Chebyshev polynomial
scaled into the interval (α, β). This way

L−1∏
i=0

(I − ΣA(i)) =

t−1∏
i=0

(I − Σ/θi)

= C

t−1∏
i=0

(θiI − Σ)

= CPL,(α,β)(Σ),

where PL,(α,β)(x) = TL(
2x−(α+β)

β−α ) is the degree L Chebyshev polynomial whose roots are
scaled into interval [α, β] and C is a constant. Note that the constant C is picked in a way
that PL,(α,β)(0) = 1. From , this condition implies that C ≤ 1

2L
√

α/β−1
, hence picking degree
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L = O(ln(1/ϵ)
√
β/α) implies that the value of PL,(α,β) on the interval [α, β] is at most ϵ. Now

looking at the eigenvalues, this implies

−ϵI ≤
t−1∏
i=0

(I − Σ/λi) ≤ ϵI.

Finally from Cauchy-Schwarz

|w∗⊤
L−1∏
i=0

(I − ΣA(i))xq|

≤ ∥w∗∥∥xq∥∥
L−1∏
i=0

(I − ΣA(i)∥ ≤ ϵ∥w∗∥∥xq∥,

which completes the proof.

D ROBUSTNESS OF LOOPED TRANSFORMERS

Lemma 4 (Transformer and loss formulas). Transformer output can be calculated as

TF(Z(0), {A(t), u(t)}L−1
t=0 ) = y(L)⊤ = yq − w∗⊤

t−1∏
i=0

(I − ΣA(i))xq.

Furthermore, the loss can be written as

L({A(t), 0}L−1
t=0 ) = EX trace

(
L−1∏
t=0

(I − Σ1/2A(t)Σ1/2)

0∏
t=L−1

(I − Σ1/2A(t)Σ1/2)

)
.

Proof. First, we show the following recursive relations:

y(t)
⊤
= w∗⊤

t−1∏
i=0

(I − ΣA(i))X (14)

y(t)q

⊤
= yq − w∗⊤

t−1∏
i=0

(I − ΣA(i))xq, (15)

We show this by induction on t. For the base case, we have w∗⊤X = y(0) and y
(0)
q = 0 =

yq − w∗⊤xq . For the step of induction, we have equation 14 and equation 15 for t − 1. We then
open the following update rule:

Z(t) = Z(t−1) − 1

n
P (t)MZ(t)A(t)Z(t)⊤,

as

y(t+1)⊤ = y(t)
⊤
− 1

n
y(t)

⊤
X⊤A(t)X

= w∗⊤
t−1∏
i=0

(I − ΣA(i))X − w∗⊤
t−1∏
i=0

(I − ΣA(i))(XX⊤)A(i)X

= w∗⊤
t∏

i=0

(I − ΣA(t))X,
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where we used the fact that XX⊤ = Σ. Moreover

y(t+1)
q = y(t)q − 1

n
y(t)

⊤
X⊤Qxq

= yq − w∗⊤
t−1∏
i=0

(I − ΣA(i))xq

− w∗⊤
t−1∏
i=0

(I − ΣA(i))(XX⊤)A(i)xq

= yq − w∗⊤
t∏

i=0

(I − ΣA(i))xq.

Therefore

EX(y(L)
q − yq)

2 = EX
(
w∗⊤

L−1∏
i=0

(I − ΣA(i))xq

)2
= EX

(
w∗⊤Σ1/2

L−1∏
i=0

(I − Σ1/2A(i)Σ1/2)Σ−1/2xq

)2
.

Now taking expectation with respect to w∗ ∼ N(0,Σ−1), xq ∼ N(0,Σ):

L({A(t), 0}L−1
t=0 ) = EXtrace

(
L−1∏
i=0

(I − Σ1/2A(i)Σ1/2)

0∏
i=L−1

(I − Σ1/2A(i)Σ1/2)

)
.

D.1 PROOF OF THEOREM 6

Proof of Theorem 6. Consider a set of diagonal matrices {B(t)}L−1
t=0 with a set of Ld distinct diago-

nal entries that satisfy αI ≼ B(t)−1
≼ 2αI for all 0 ≤ t ≤ L− 2 and B(L−1)−1

= βI , and define
the distribution

Pα,β ≜
1

L

L−1∑
t=0

δB(t) ,

where δB(t) is a point mass on B(t). Moreover, for parameter δ′, consider an alternative distribution
P̃α,β on Σ where it has at least ϵ amount of mass on matrices 4αI ≼ Σ ≼ (1−δ′)βI . First, note that
the global minimum of LPα,β is zero and LPα,β ({A(t)∗}L−1

t=0 , 0) for A(t)∗ ≜ B(t)−1∀0 ≤ t ≤ L−1.

Now for an arbitrary matrix Σ such that 8αI ≼ Σ ≼ (1− δ′)βI , we have for all 0 ≤ t ≤ L− 2:

Σ1/2A(t)∗Σ1/2 = Σ1/2B(t)−1
Σ1/2

≽ Σ1/22αI−1Σ1/2

≽ 4I,

which implies

I − Σ1/2A(t)∗Σ1/2 ≼ 3I.

Therefore, for all 0 ≤ t ≤ L− 2, (
I − Σ1/2A(t)∗Σ1/2

)2
≥ 9I.

On the other hand, for t = L− 1:

Σ1/2A(L−1)∗Σ1/2 =
1

β
Σ ≤ (1− δ′)I,
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which implies

I − Σ1/2A(L−1)∗Σ1/2 ≽ δ′I.

Hence, (
I − Σ1/2A(L−1)∗Σ1/2

)2
≥ δ′2I.

Therefore, by repeating the inequality CBC⊤ ≥ CDC⊤ for arbitrary matrices B,C,D where
B ≽ D, we get

L−1∏
t=0

(I − Σ1/2A(t)∗Σ1/2)

0∏
t=L−1

(I − Σ1/2A(t)∗Σ1/2) ≽ δ′9L−1I.

Therefore

trace

(
L−1∏
t=0

(I − Σ1/2A(t)∗Σ1/2)
0∏

t=L−1

(I − Σ1/2A(t)∗Σ1/2)

)
≥ dδ′9L−1.

On the other hand, note that from our assumption the distribution P̃α,β has at least ϵ mass on matrices
Σ with 4αI ≼ Σ ≼ (1− δ′)βI . Therefore

LP̃α,β ({A(t)∗}L−1
t=0 , 0) ≥ ϵδ′d9L−1.

E PROOF OF THEOREM 3

Proof. From Lemma 4 (for u(t) = 0), ∀t ≤ L, we have

y(t)
⊤
= w∗⊤

t−1∏
i=0

(I − ΣA(i))X,

y(t)q = yq − w∗⊤
t−1∏
i=0

(I − ΣA(i))xq.

Therefore

∥y(L)∥2 = ∥X⊤
L−1∏
i=0

(I − ΣA(i))w∗∥2

= ∥
L−1∏
i=0

(I − ΣA(i))w∗∥2XX⊤ .

Therefore,

|yq − y(L)
q | = |w∗⊤

L−1∏
i=0

(I − ΣA(i))xq|

≤ ∥xq∥(XX⊤)−1∥
L−1∏
i=0

(I − ΣA(i))w∗∥XX⊤

≤ ϵ.
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F PROOF OF THEOREM 8

Proof of Theorem 8. Suppose Σ1/2 = vv⊤ is rank one and define

v⊤A(i)v ∥v∥2 = γi.

Then
Σ1/2A(i)Σ1/2 = vv⊤A(i)vv⊤ = γiṽṽ

⊤,

for γi > 2, where ṽ is the normalized version of v. This implies(
I − Σ1/2A(i)Σ1/2

)
= (1− γi)ṽṽ

⊤ +
(
I − ṽṽ⊤

)
,

which then gives

LΣ({A(i)}Li=0, 0) = trace

(
L−1∏
i=0

(I − Σ1/2A(i)Σ1/2)

0∏
i=L−1

(I − Σ1/2A(i)Σ1/2)

)

=

L−1∏
i=0

(γi − 1)2 + (d− 1).

Therefore, the loss is increasing with depth if γt > 2 and decreasing if γt < 2. Therefore, for the
behavior of the loss wrt to depth to be either increasing or decreasing for all t, for every v, we need
to have that either all γi’s are great than or equal to 2, or less than or equal to 2. But this implies that
for all v and all i, j:

v⊤A(i)v = v⊤A(j)v.

Suppose this is not the case for some v, i, j, namely

v⊤A(i)v < v⊤A(j)v.

Then, we can scale v so that v⊤A(i)v < 2 and v⊤A(i)v > 2 which contradicts the monotonicity of
the loss wrt to depth. Therefore, for all v, and all i, j, we showed

v⊤A(i)v = v⊤A(j)v,

which implies for all i, j ∈ [L] we should have

A(i) = A(j).

Next, we show the argument for loop models. Namely, suppose A(1) = · · · = A(L) = A. The loss
in this case becomes

LΣ({A}Li=0, 0) = trace
(
(I − Σ1/2AΣ1/2)2L

)
. (16)

Now let β1 < · · · < βd−1 are the eigenvalues of Σ1/2AΣ1/2. Then

LΣ({A}Li=0, 0) =

d1∑
i=0

(1− βi)
2L. (17)

Now if |1− βi| ≤ 1 for all 0 ≤ i ≤ d− 1, then each term (1− βi)
2L is decreasing in L. Otherwise,

suppose there is j such that |1− βj | > 1. Then, defining L0 = ln(d/(|1− βj | − 1))/ ln(|1− βj |),
then for L ≥ L0, we have

(1− βj)
2L ≥ d

|1− βj | − 1
.

Hence,
(1− βj)

2(L+1) ≥ (1− βj)
2L + (1− βj)

2L × (|1− βj | − 1) (18)

≥ (1− βj)
2L + d. (19)

This means going from L to L + 1, the loss increase by at least d, while the potential decrease in
the loss from the other d − 1 terms in equation 17 is at most d − 1. Hence, we showed that for all
L ≥ L0, the loss is increasing in this case, which compeletes the proof.
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